
Untraceability of Mobile Agents

Rafał Marek Leszczyna
Joint Research Centre,

Ispra, Italy
Institute for the Protection and security of the Citizen

Rafal.Leszczyna@jrc.it

Janusz Górski
Gdańsk University of Technology,

Gdańsk, Poland
Department of Software Engineering

jango@pg.gda.pl

13 December 2004

Abstract

User untraceability is an issue of increasing importance as it helps in imple-
menting user privacy in modern Internet services. In mobile agent environments
each platform can easily constitute an anonymizer for an agent, assuring untrace-
ability of the agent sender and the receivers. Based on this observation two proto-
cols are proposed. Comparing to other solutions, the advantage of the protocols is
that they support agent’s autonomy in choosing the migration path. Security of the
protocols was analyzed against known generic and traffic analysis attacks. The first
protocol assures more balanced distribution of processing over all agent platforms
but an attacker can compromise untraceability if he/she manages to perform the
costly cordoning-off attack. The second eliminates this vulnerability at the cost of
putting more computation workload on the source platform and restricting agent
autonomy in the beginning of its route. Some implementation decisions aiming at
improving performance of the proposed protocols are also presented.

1 Introduction

1.1 The need for anonymity
Anonymity is the property that ensures that a user may use a resource or service
(the items of interest) without disclosing his/her identity [1]. Different settings [2]
of anonymity may be proposed depending on the way of accessing a resource by a
user. The most often considered setting refers to the anonymity of communication [2],
where one item of interest is sending and another is receiving messages. Three models



of communication anonymity are defined. Sender anonymity assures that it is not pos-
sible to identify the sender of a message. Receiver anonymity means that the intended
recipient cannot be inferred from the message. Relationship anonymity means that it
is untraceable who communicates with whom. Although the above models refer to
communication anonymity, they can be easily adapted to other types of anonymity, for
instance that related to accessing resources through a network.

Anonimity plays a crucial role for variuos activities conducted in the Internet. For
example, in health counseling, a patient suffering from an embarrassing disease or from
an addiction may wish to stay anonymous when asking for an advice [3]. Gulcu et al [4]
describe four categories of the Internet applications where the anonymity is required1.
These are: discussion of sensitive and personal issues, information searches, freedom
of speech in intolerant environments and polling/surveying. For some of these uses,
the anonymous access was an enabler and contributed to increasing the popularity of
the Internet.

Moreover, currently many service providers have developed their tracking tools
[5], so anonymity is being requested even for the services which did not required it
previously. Users, who are bothered with advertisements, offers and so on, wish to
be sure that visiting a new portal would not result in flooding them with unwanted e-
mail, add-aware and other spam even if the functionality they take advantage of is not
confidential itself.

1.2 The state of affairs
The Internet is based on the TCP/IP. The protocol has numerous advantages resulting
mainly from its simplicity, nevertheless it provides weak support for anonymity of
communication. The source and destination addresses are stated explicitly allowing
easy tracing who is sending what.

1.3 Attacks against untraceability in TCP/IP networks
The attacks can be classified as follows [4] [6].

1.3.1 Generic attacks

Generic attacks are the most atomic activities the attacker can perform after discovering
a system vulnerability. If information about the source and destination of a message is
not protected, it can be read, deleted or modified by an attacker. Encryption of these
data protects them from generic attacks.

1.3.2 Passive attacks

Content Correlation: The attacker attempts to gain the information about the network
traffic by comparing packets detected by monitors. The monitor is a software or hard-
ware equipment allowing the attacker to view the content of packets passing the net-
work connection at the place where the monitor is installed. Then if two packets ob-

1This is important to note that the authors don’t claim this set to be exhaustive.

2



served by the monitors in different time have common contents or are of the same size,
they are likely to be the same. Time Correlation: The attacker deduces the relation
between packets by measuring the time relations of the packet arriving to and leaving
a network location.

1.3.3 Active attacks

Isolate and Identify: This attack is the answer of attackers for the batching of trans-
ferred packets. The attacker unable to identify a packet directly, sends its own packets
to the mix, in the amount equal to the number of messages in the mix batch minus one.
This causes the mix to form a batch with only one packet not known to the attacker, so
he/she can easily extract it. Now the attacker is able to connect the packets leaving and
entering the mix. Message Replay: The attacker figures out the relationships between
packets entering and leaving mixes by simply replaying the messages before they en-
ter the mixes. In unprotected environments the packets leaving the mixes will also be
repeated, so the attacker could associate them.

1.4 Existing solutions for the TCP/IP
Chaum was the first who introduced the concept of the anonymous proxy, called by him
a mix [7]. The idea comes from the observation that since the packet’s source address
indicates the station from which the packet was sent, we should send the packets to the
intermediate station which will resend our packets further. Because after leaving the
mix, its address replaces the address of previous source station nobody can learn the
real originator of the packets. The concept of mix, due to its simplicity, has found many
followers which has results in the introduction of multiple variants of the original pro-
tocol, both in research and practical implementations available in the Internet. The first
group includes Non Disclosure Method (NDM) [8], BABEL [4], Onion Routing [9]
and Crowds [10]. To the latter belong: raw remailers, Cypherpunks (Type I remailers),
Mixmasters (Type II remailers) and others [11]. These solutions differ in complexity
and provide various levels of protection.

In 1988 Chaum described the Dining Cryptographers problem and by this opened
the alternative way of assuring the user anonymity [12] . The new solution, called DC
network, is far from the idea of mixes and roughly saying it is based on interoperation
of all communication partners who must share some secret information between them.
However this protocol is very resource consuming because all partners are involved in
transmission of each message (by means of forecasting and receiving packets to/from
the others), no matter who is the real originator of the message, and apart of a few ex-
perimental cases [13] [14], the protocol has not reached any popular implementations.

1.5 Anonymity with Mobile Agents
While applying the communication anonymity model to mobile agents, the sender
anonymity assures that it is impossible to infer neither the agent owner nor the source
(base) platform of the agent. The receiver anonymity guarantees the obfuscation of the
agent goal which can be stated, for example, as en explicit list of platforms to visit, a

3



Agent Platform

(a) wire listener

Agent Platform

(b) platform compro-
miser

Agent Platform

(c) colluding wire lis-
tener and platform
compromiser

Figure 1: Different types of attackers: a) a wire listener b) a platform compromiser c)
a party formed of colluding a wire listener and a platform compromiser.

task to complete or a resource to access. Relationship anonymity means that the agent
source (a user or a platform) is unlinkable to its goal.

1.6 Attacks against untraceability in mobile agents networks
1.6.1 Attacks

The attacks already identified for TCP/IP networks apply to the mobile agents networks
with only slight modifications. In case of generic attacks the concern is the agent’s
route information instead of just the information about the source and the destination.
The agent’s route (or migration path) is the list of platforms the agent intends to visit.
While considering other (non-generic) attacks in TCP/IP networks, adapting them to
mobile agents networks means putting the word ’agent’ in place of the word ’packet’.

1.6.2 Attackers

For mobile agents we can distinguish two atomic types of the attackers against user
untraceability. A wire listener is the attacker capable to observe the packets entering
and leaving an agent platform. For example, it can be a person using a sniffer program
[15]. A wire listener looks at the packets and reads their content, if the communication
is not encrypted. If it is, the attacker is still able to perform some statistical analysis by
finding the chronological or content relations between the packets (see Section 1.3.2).
A platform compromiser is the attacker succeeding in compromising an agent platform.
Platform compromisers are more powerful than wire listeners since not only they have
access to the whole information about agents (if this information is not encrypted) but
also can control the agents or modify them. Finally, the attacking party may be set up
of colluding attackers.

1.7 Discussion
A disadvantage of existing solutions based on TCP/IP is that users have to trust third
parties which provide for the anonymization. In the most popular mix-based appli-
cations users have to choose a party which serves as an intermediate point in their

4



communication. All user data are then transferred through the hosts belonging to this
party. Another drawback of using such anonymization services in the Internet is that it
requires some technical competence from users: first they have to make a right choice
when selecting the anonymization provider then they must configure their operating
environment accordingly.

With Mobile Agents the above concerns are automatically resolved since every
agent platform establishes a mix. The mix does not need any set up by a user because
it is provided as internal functionality of the agent environment. Additionally Mobile
Agents introduce some level of untraceability by default. Attacker analyzing source
addresses of IP packets obtains only the address of the host carrying the last platform
visited by the agent on its way. These properties of Mobile Agents were already discov-
ered by Enzmann et al [16] who proposed the onion like protocol to protect an agents’
route. Other solutions for agents were also onion routing like [17]. The drawback of
using these protocols is that the agent’s route must be predetermined and composed on
the agent’s source platform so the autonomy of agents in choosing their migration path
is lost.

This article presents two protocols which assure agent untraceability while not con-
straining its autonomy in choosing the migration patch. The protocols are little resource
consuming and, apart of the first protocol and the cordoning-off attack, are resistant to
known generic and traffic analysis attacks. The first protocol assures more balanced
distribution of computation over all agent platforms, the second puts more processing
workload on the source platform and restricts agent autonomy, but eliminates the ex-
posure to the cordoning off attack. The protocols are planned to be implemented based
on the JADE [18] middleware and incorporated into the JADE platform for the sake
of experimental performance and efficiency validation. When successful, the protocols
could serve as an extension of the JADE platform.

2 The Protocols

2.1 Assumptions
It is assumed that a platform guarantees that third parties (other agents, users) are not
informed about the presence of other agents if the latter do not want to do so. It means
that it is impossible to introduce spying agents i.e. the agents aiming at observing and
following other agents. It is also assumed that each platform is well isolated, so it is
impossible to learn its state from outside. Each platform owns an individual symmetric
key and a private asymmetric key. A platform must also have access to all needed public
keys of other platforms. However, the actual implementation of the key management is
out of scope of this article. Each platform stores the identifier of the previous platform
visited by an agent until the agent leaves out. This identifier is available to the agent.

2.2 Basic protocol
The basic protocol is dedicated to obfuscate the identity of an agent source platform
while keeping the agent capable to autonomously select the next platform to visit. The

5



protocol is intended to be as little resource consuming as possible. Encryption is em-
ployed only when necessary and only to an essential content.

Generally, the idea of the protocol is that while migrating, the agent encrypts the
identifier of the last visited platform (using the public key of the present platform) and
puts it to the LIFO queue stored in the agent. After achieving the goal, when the agent
wishes to come back to its base platform, it uses the queue to find its way back. Down
the route back the identifiers are subsequently decrypted using each platform private
key.

The pseudo-code of the protocol is presented below (Listing 1). This is important
to note that the variable m is used only to illustrate subsequent steps of algorithm and
is not stored explicitly in the agent state. Storing the counter of visited platforms in
the agent state would allow the attacker to identify the base platform, since he/she
could always read how many platforms are left to the base platform. If the attacker
located himself/herself right next to the base platform, it could easily recognize that the
preceding platform is the source platform of the agent. This doesn’t take place in the
proposed protocol. Even very close to the base platform attacker can not recognize the
situation. For the same reasons the LIFO queue of platform identifiers is initially filled
with a number of random values. The notation (B1, B2, ..., Bn) represents the
binary concatenation of the values B1, B2, . . . , Bn. The nonce Nk is used to assure
uniqueness of obtained values.

Listing 1: The basic protocol pseudo-code.

1. The LIFO queue of encrypted platform identifiers (stored in the agent’s
state) is initially filled with a number of random values

2. m=2

3. The agent moves to the platform APm

4. The agent processes its task on the platform APm

5. If mission accomplished then go to 12

6. The agent decides which platform to visit next (APm+1)

7. The platform APm computes the hash value of the predecessor identifier
IDm−1, the own identifier IDm and the successor identifier IDm+1 obtaining
H(IDm−1, IDm, IDm+1)

8. The platform APm encrypts the identifier IDm−1, the hash value (IDm−1,
IDm, IDm+1) and the nonce Nm with its secret key Km obtaining Km(IDm−1,
H(IDm−1, IDm, IDm+1), Nm)

9. The agent adds Km(IDm−1, H(IDm−1, IDm, IDm+1), Nm) to the end of the
queue of encrypted platform identifiers

10. m=m+1

11. Go to 3

// Coming back to the source platform (AP1) from the last platform on the
route (APn)

12. m=m-1

13. The agent moves to the platform APm

14. If APm == AP1 then finish()

6



15. The platform APm takes out (and does not put it back later) the first
encrypted platform identifier available from the LIFO queue of encrypted
platform identifiers

16. If the queue was not compromised the taken part should be the one encrypted
with the secret key Km of the platform, if it is not then go to 20

17. The platform decrypts the encrypted platform identifier and obtains
IDm−1, H(IDm−1, IDm, IDm+1) and the nonce

18. The platform verifies the hash value H(IDm−1, IDm, IDm+1)

19. If the verification does not fail then go to 12

// The verification of hash value has failed - the string of encrypted platform
identifiers was compromised - perform the emergency scenario

20. Perform the emergency scenario

2.3 Extended protocol
The extended protocol was designed as an extension of the basic protocol to make it
resistant to the cordoning-off attack, i.e. the attack against the anonymity of an agent
source platform which during the security analysis (described in 3) was recognized as
effective. In the protocol, the source platform arbitrarily chooses a particular number
of platforms the agent has to visit initially and creates the list of their encrypted iden-
tifiers. This serves as the initial route letting the agent to obfuscate its source address.
After leaving this initial route, the agent is free to make decisions about which plat-
forms to visit next. It autonomously roams the network to achieve its goal and after
succeeding returns to the last platform of the initial route. Then, to come back to its
source platform, it must follow the initial route in the reverse order. In the extended
protocol, only the last platform of the route knows the destination address but it is not
able to recognize the source address. The first platform knows the source address but
without the knowledge of being the first in the route (it could be just another platform
on the route).

The protocol is presented in the pseudo-code (Listing 2). As in the pseudo-code of
the basic protocol, the variables m and i are used only to illustrate subsequent steps of
algorithm and are not stored explicitly in the agent state.

Listing 2: The extended protocol pseudo-code.

// Preparations

1. The agent’s base platform defines the initial route of an arbitrary
length i: AP2, AP3, ...APi+1

2. The platform encrypts the route into the string - K2(ID3, H(ID1, ID2,
ID3), N2), K3(ID4, H(ID2, ID3, ID4), N3), ..., Ki(IDi+1, H(IDi−1, IDi, IDi+1),
Ni) using the public keys K2, K3 , ..., Ki of the chosen platforms, and
stores it into the agent’s state

3. The platform produces the return route string Ki+1(IDi, H(IDi+1, IDi),
N’i+1), Ki(IDi−1, H(IDi+1, IDi, IDi−1), N’i), ..., K2(ID1, H(ID3, ID2, ID1),
N’2) using the public keys K2, K3, ..., Ki+1, and stores it into the
agent’s state

7



4. The platform encrypts the agent’s goal G using the public key Ki+1 of
the last platform APi+1 on the initial route, obtaining Ki+1(G), and
stores it into the agent’s state

// Following the initial route

5. m=2

6. The agent moves to the platform APm

7. If the string of encrypted platform identifiers is empty go to 14 //
at the same time it means that the agent reached the last platform on
its initial route (and m=i+1 at the moment)

8. The platform APm decrypts the dedicated part of the string of encrypted
platform identifiers Km(IDm+1, H(IDm−1, IDm, IDm+1), Nm) obtaining
the identifier of the succeeding platform IDm+1, the nonce and the hash
value H(IDm−1, IDm, IDm+1)

9. The platform verifies the hash value H(IDm−1, IDm, IDm+1)

10. If the verification fails go to 31

11. The platform removes the Km(IDm+1, H(IDm−1, IDm, IDm+1),Nm) entry
from the string of encrypted platform identifiers

12. m=m+1

13. Go to 6

14. The platform APm, where m=i+1 at the moment, decrypts Km(G) to unhide
the agent’s goal

15. The identifier IDi+1 of the platform APi+1 is stated explicitly in the
agent’s state

// Autonomous migration to achieve the goal

16. The agent migrates autonomously from one to another agent platform to
achieve its goal G

17. The agent decides to return to its base platform

// Returning to the base platform

18. The agent moves back to APi+1

19. The identifier IDi+1 of the platform APi+1 is removed from the agent’s
state

20. The platform APi+1 decrypts the dedicated part of the string of encrypted
platform identifiers Ki+1(IDi, H(IDi+1, IDi), N’i+1) obtaining the identifier
of the proceeding platform IDi, the hash value H(IDi+1, IDi) and the nonce

21. The platform verifies the hash value H(IDi+1, IDi)

22. If the verification fails go to 31

23. m=m-1

24. The agent moves to the platform APm

25. If the string of encrypted platform identifiers is empty then finish()
// at the same time it means that the agent reached its base platform
(and m=1 at the moment)

26. The platform APm decrypts the dedicated part of the string of encrypted
platform identifiers Km(IDm−1, H(IDm+1, IDm, IDm−1), N’m) obtaining
the identifier of the proceeding platform IDm−1, the nonce and the hash
value H(IDm+1, IDm, IDm−1)

27. The platform verifies the hash value H(IDm+1, IDm, IDm−1)

28. If the verification fails go to 31

8



29. The platform removes the Km(IDm−1, H(IDm+1, IDm, IDm−1), N’m) entry
from the string of encrypted platform identifiers

30. Go to 23

// The verification of has value has failed

31. Perform the emergency scenario

2.4 Design decisions
During the design of the protocols the reference agent platform was JADE [18], which
is envisaged to be the platform on which the practical examinations of the protocols
will be performed. JADE was selected from a nine FIPA compliant agent platforms,
after studying available agent platform evaluations and assessing the platforms against
the criteria related to the platform accessibility and availability, the level of support for
the platform, its maintenance etc [19].

According to JADE documentation, the containers are identified using ContainerID class
which wraps the characters’ string of the URL-alike container name. This means that in
current representation the container identifier may take up to 2083 characters because
this is the limitation for URL addresses imposed by the internet browsers. Having
this in mind we can perform some introductory estimations of the performance of the
generic operations (mainly encryption related) necessary in security protocols. Know-
ing the fact that using encryption always reduces the efficiency of the solution, the
protocols were designed to involve only necessary encryption steps. The symmetric
encryption instead of asymmetric is used to provide confidentiality of the route infor-
mation. The simplest hashing is employed to obtain basic guaranties of integrity. As
the symmetric cipher the official AES Algorithm was chosen - Rijndael [20] because its
efficiency and security were comprehensively examined during AES selection process.
For the reasons of efficiency and simplicity the MD5 [21] algorithm was selected to be
used for hashing.

The tables 1 and 2 show the results of performance tests of AES Candidate Algo-
rithms obtained on a Pentium Pro machine2[22]. The examinations of MD5 perfor-
mance indicate that the hashing is about four times faster [23]. These results accompa-
nied with the knowledge of the representation of platform address stored in agents were
the reason why the proposed protocols store route information in concatenated repre-
sentation rather than the onion-like [9] [16]. The latter would impose linear growth
of computational costs of protection of the route information since each mix-platform
had to encrypt/decrypt not only the one necessary identifier but the whole already con-
structed onion. With this careful selection of route representation and reduction of used
encryption the sketchy analyses of protocols performance shows that decryption of the
address of preceding platform will take about 0.001 s, meaning that platforms will be
able to process one thousand agents per second. This performance might be signifi-
cantly improved (for about an order) when changing the string representation of agent
platforms identifiers to the numerical (32-, 64- or 128- bit).

2The results were obtained by running the tests on a machine with an Intel Pentium Pro 200 MHz CPU
and 128 MB RAM running Windows NT 4.0 with Service Pack 4. Performance wise this is virtually identical
to the NIST reference platform (64 MB RAM and running Windows 95).

9



Encryption Speed (kbit/s) DES (56 bit) Triple DES (168 bit) IDEA MARS RC6 Rijndael Serpent Twofish
128 bit key 10508 4178 12820 19718 26212 19321 11464 19265
192 bit key n/a n/a n/a 19760 26192 16922 11474 19296
256 bit key n/a n/a n/a 19737 26209 14957 11471 19275

Table 1: Encryption performance of the AES Candidate Algorithms in Java [22].

Decryption Speed (kbit/s) DES (56 bit) Triple DES (168 bit) IDEA MARS RC6 Rijndael Serpent Twofish
128 bit key 10519 4173 13018 19443 24338 18868 11519 18841
192 bit key n/a n/a n/a 19670 24382 16484 11514 18841
256 bit key n/a n/a n/a 19489 24279 14468 11533 18806

Table 2: Decryption performance of the AES Candidate Algorithms in Java [22].

3 Security Analysis
This chapter presents the results of the examination of security of the two presented
protocols against the traffic analysis attacks (see Sections 1.3 and 1.6). In addition
to the cryptographic means used in the protocols (i.e. computing hash values, using
nonces and encrypting the obtained binary strings), agents may also be encrypted as
a whole (i.e. the agent’s code and the state are encrypted), while being transferred
from one platform to another. This functionality however, is not a part of the proposed
protocols but is optionally provided by third parties (usually agent platforms). For the
sake of the completeness of the analyses both cases, with and without encryption, are
discussed. This may also give the picture how the proposed protocols can get along
with the protection mechanisms already embedded in agent platforms. As we will see
encrypted agents are better protected from wire listeners (so hybrids) attackers. But at
the same time the agents are less efficient, which can be significant while experienc-
ing heavy traffic. The use of hardware acceleration can help to resolve this problem.
From other side, encrypting agents while sending them to other platforms is often the
functionality embedded into the agent platform by default, to satisfy other (non un-
traceability related) security needs, mainly confidentiality.

3.1 Basic protocol
The protocol’s objective is to protect the identity of the agent base platform without re-
stricting agent’s autonomy in choosing its migration path. To enable this autonomous
migration, the agent goal has to be stated explicitly and can not be hidden from agent
platforms. The platform compromiser can read, delete or modify the goal of the agent
but can not compromise its source. The wire listeners could also read, delete or modify
the goal, if agents were not encrypted. There is an attack which can lead the attacker
to recognize the base platform, although it is difficult to perform in case the agent is
encrypted. If the attacker manages to cordon off3 the agent platform, then he/she can
deduce if the platform is the base for an agent by means of the content correlation attack

3If agents are not encrypted listening at all links to the agent platform is enough. If agents are encrypted
then compromising all surrounding platforms are necessary.

10



(a) (b)

Figure 2: Cordoning off the agent platform is the only way to learn when the platform
is the base for an agent. When agents are not encrypted listening at all links to the
agent platform is enough - figure a). If agents are encrypted then compromising all
surrounding platforms are necessary - figure b).

(Figure 2). In practice, compromising all the platforms surrounding the chosen one is
very difficult (if not impossible) since the set of surrounding platforms usually will be
large (in particular it might comprise all platforms), distributed across wide geograph-
ical area. This picture gets even more complicated if the platforms are deployed on
mobile devices such as PDA’s or mobile phones, communicating from different, often
moving, locations (e.g. cars, aircrafts and ships). With unencrypted agents it is much
easier to conduct this attack - usually platforms use only one network connection. This
is an additional argument for encrypting agents.

The protocol protects the agent’s route from deleting or exchanging entries, but
it is not resistant to collusion attack described by Westhoff et al [17]. The attacker
succeeded in tampering two agent platforms may remove the information about all the
intermediate platforms without that fact being recognized. Nevertheless the deletion
and the insertion attacks don’t aid disclosing the identity of the base platform.

3.2 Extended protocol
This protocol is as an extension of the basic protocol aiming to withstand the cordoning-
off attack. As the previous protocol, it protects the identity of an agent base platform
whilst the agent is still able to make autonomous decisions concerning its migration
path. Only an attacker located after initial route, being it a platform compromiser or
a wire listener, can read the agent’s goal. But at the moment none of them is able to
recognize the agent’s base platform.

When the attacker is capable of compromising agent platforms he/she must tamper
with all the platforms surrounding the base platform but also it must be in control of
one platform passed by the agent on its route but not belonging to the initial route, apart
of its last platform (Figure 3a). The attacker performing traffic analysis by means of
listening on network connections must surround the agent base platform and the link
passed by the agent on its route but not belonging to the initial route (Figure 3b). Then
in both cases, the attacker, to succeed, must be also able to recognize when the agent
passing the independent platform is the same as the one which left the source platform.

11



m1
m2

m3

m4

ap

(a)

m1
m2

m3

m4

ap

(b)

Figure 3: To discover the agent’s source and the goal at the same time the platform
compromiser must compromise all the platforms surrounding the base platform and
also it must be in control of one platform passed by the agent on its route but not be-
longing to the initial route, apart of its last platform - figure a). The wire compromiser
must surround the agent base platform and the link passed by the agent on its route but
not belonging to the initial route - figure b).

4 Summary
The analysis of complexity of the protocols (see Section 2.4) led to careful selection of
encryption tools, the encryption steps involved in the protocol and the representation
of the route information. The efficiency considerations led to distinction between two
protocols: the basic and the extended one. The basic protocol requires the agent to
compute the appropriate route information on each container of its migration path.
This results in the equally balanced deployment of workload on all containers. The
extended protocol shifts a significant part (the encryption related) of computations to
the source platform which is supposed to define the initial route of the agent. However,
the user may control the length of the route. The longer the route, the more difficult is to
figure out the source address of the agent. But the same time, the source platform must
compute a longer route information string. While traversing the route, only decryption
is needed, and only on containers belonging to the initial part of the route.

Compromising the protocols is hard because the attacker must gain control over nu-
merous containers (or network connections) distributed over the Internet. Cordoning-
off the source platform could lead to breaking the source anonimity in case of the
basic protocol. If agents are not encrypted, this attack can be particularily efficient be-
cause surrounding the base platform might mean that listening to just one (the only one
existing) connection to the platform would be enough. This is a strong argument for
encrypting agents, however this encryption brings additional overhead. The conclusion
is that the basic protocol is appropriate for the environments where the encryption of
agents is already in place, and especially if this encryption is provided by a hardware
solution. The extended protocol protects from the cordoning-off attack even against
a wire listener and when agents are not encrypted. The attacker gains the knowledge
about the source platform but is unable to deduce the agent destination until he/she
cover the whole initial route. Since this protocol imposes less requirements for the
encryption than the basic version, it is applicable for the environments where the en-
cryption is not provided by default.

12



Comparing to the onion-like protocols first proposed by Westhoff et al [17] and
followed by Enzmann [16] the described solutions have the advantage that the agent
is given the liberty in choosing its migration path. In case of the basic protocol, this
feature is provided from the beginning, right after the agent leaves the source platform.
In the extended protocol, the agent obtains the autonomy after traversing the initial
route. The autonomous choice of the roaming path by agents is one of the properties
which distinguish mobile agents from other software technologies. It has numerous
potentially useful implications: agents may adapt their route to the network traffic
conditions, may decide to come back when achieving the goal earlier than anticipated
- to save time or to be more competitive than others (auction bidding) etc. Restraining
this functionality takes away a part of the virtue of the mobile agents paradigm.

The described protocols are planned to be implemented and validated experimen-
tally upon the JADE platform. If the tests succeed, the protocols could be proposed as
an extension of the JADE platform.

Acknowledgement
We would like to thank Marc Wilikens for suggesting valuable improvements to the
paper.

References
[1] National Institute of Standards and Technology (NIST). Common Criteria for In-

formation Technology Security Evaluation - Part 2: Security Funtional Require-
ments. U.S. Government Printing Office, 1998.

[2] Andreas Pfitzmann and Marit Köhntopp. Anonymity, unobservability, and
pseudonymity - a proposal for terminology. draft v0.21. 2004.

[3] EU IST-2002-507591 PRIME. Requirements version 0 part 3: Application re-
quirements.

[4] Ceki Gulcu and Gene Tsudik. Mixing email with Babel. In Proceedings of
the 1996 Symposium on Network and Distributed System Security (SNDSS ’96),
page 2. IEEE Computer Society, 1996.

[5] Tie lucent personalized web assistant. Website. http://www.bell-labs.
com/project/lpwa/proxy_index.html (last access: May 4, 2005).

[6] Lance Cottrell. Mixmaster and remailer attacks, 1995.

[7] David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 4(2), February 1981.

[8] A. Fasbender, D. Kesdogan, and O. Kubitz. Variable and scalable security: Pro-
tection of location information in mobile ip, 1996.

13



[9] Michael G. Reed, Paul F. Syverson, and David M. Goldschlag. Anonymous con-
nections and onion routing. IEEE Journal on Selected Areas in Communications,
16(4), 1998.

[10] Michael K. Reiter and Aviel D. Rubin. Anonymous web transactions with crowds.
Commun. ACM, 42(2):32–48, 1999.

[11] Anonymity and privacy on the internet. Website. http://www.stack.nl/
˜galactus/remailers/.

[12] David Chaum. The dining cryptographers problem: Unconditional sender and
recipient untraceability. Journal of Cryptology, 1:65–75, 1988.

[13] Experimental crypto software: Dcchat. Website. http://www.geocities.
com/cryptosw/dcchat.html.

[14] Heiko Stamer. Dining cryptographers networks. Master’s thesis, The Institute of
Computer Science, Leipzig University, May 2003.

[15] National Institute of Standards and Technology (NIST). An introduction to com-
puter security: The NIST handbook. National Insitute of Standards and Tech-
nology (NIST) Special Publication 800-12. U.S. Government Printing Office,
October 1995.

[16] Matthias Enzmann, Thomas Kunz, and Markus Schneider. Using mobile agents
for privacy amplification in the trade with tangible goods. In 6th World Multi-
Conference on Systemics, Cybernetics and Informatics (SCI), volume IV, Or-
lando, Florida, USA, July 2002.

[17] Dirk Westhoff, II Markus Schneider, Claus Unger, and Firoz Kaderali. Protecting
a mobile agent’s route against collusions. In Proceedings of the 6th Annual Inter-
national Workshop on Selected Areas in Cryptography, pages 215–225. Springer-
Verlag, 2000.

[18] Jade-board. Website. http://jade.talab.com/.

[19] Rafał Leszczyna. Evaluation of agent platforms. Technical report, European
Commission, Joint Research Centre, Institute for the Protection and security of
the Citizen, Ispra, Italy, June 2004.

[20] NIST Computer Security Resource Center. Aes algorithm (rijndael) information.

[21] Ron Rivest. The MD5 message digest algorithm, April 1992.

[22] Andreas Sterbenz and Peter Lipp. Performance of the aes candidate algorithms
in java. In AES Candidate Conference, pages 161–165, 2000.

[23] Wei Dai. Speed comparison of popular crypto algorithms. http://www.
eskimo.com/˜weidai/benchmarks.html.

14


